

Lessons Learned from Radiation-induced Effects on Solid State Recorders and Memories

C. Poivey, J. Barth, G. Gee, H. Safren, K. LaBel

Outline

- Introduction
- Examples:SEASTAR,APEX/CRUX
- Accuracy of upset rate calculations
- Efficiency of SEU mitigation schemes
- Conclusion

Introduction

Flight Data Examples, Seastar-Geographic Plot of Single Hits

SeaStar Satellite: SEUs at 705 Km Altitude HIO-second transmissions only L January 1, 1999 - June 11, 2002

Typical day 7/13/200: ~ 80% of SEU occur in SAA

Solar Event 7/14/2000

Solar Event: 7/14-15/2000

SRAMs Upset Rates on CRUX/APEX

Evolution of SEU rate versus time

SEASTAR FDR1&2

Proton composition of main solar events

Solar proton >100 MeV flux compared to SEU number

Modulation of the SEU rate with solar activity

SEASTAR FDR1&2 monthly average

Predictions of the upset rates

- Proton rates are generally underestimated and heavy ion rates overestimated, but generally an overall acceptable agreement is observed (within an order of magnitude) if:
 - Adequate environments models are used (CREME96) with the adequate solar modulation.
 - Heavy ion and proton data has been taken
- But discrepancies have been observed. They are due to:
 - SPE Environment models
 - Ground testing sample size
 - Assumptions on sensitive volume geometry for heavy ion rates

SPE environment models

- SOHO SSR (DRAM 4M)
 - Predicted rate orders of magnitude higher than the observed rate during July 14 event (During quiet period agreement within a factor 2 with CREME96 model).
 Possible causes:
 - Shielding effect (assumed 1g/cm² of shielding)
 - CREME96 SPE models, (especially the ion component).
- MPTB DRAM (DRAM 16M) experiment
 - Predicted rates orders of magnitude higher than the observed rates during July 14 event (During quiet period, agreement within a factor 10). The cause has been attributed to the CREME96 model, because a good agreement was found with the actual measured spectra (CREDO3 instrument).

Ground Testing Sample Size

- APEX CRUX (SRAM256K & 1M experiment), surprising results obtained because of large part to part variation (up to a factor 10)
 - Large part to part variation confirmed by ground testing
 - Variation of +/30% can be explained by the shielding
- HST SSR (12 Gbit made with 1440 DRAM 16M) anomaly was not detected by initial ground testing
 - Anomaly due to a SEFI, low device event sensitivity (~6E-13 cm²/die)
 - Sensitivity confirmed during ground testing of 100 parts
- Large part to part dispersion also observed on UOSAT and EXEQ experiments.

Assumptions on Sensitive Volume Geometry

EXEQ experiments

- A conservative assumption of the sensitive volume thickness (2 μm) leads to a factor 45 overestimation of the flight rates on a 16M DRAM.
- A probing of the sensitive volume with low energy ions, showed a sensitive volume thickness of about 7 μm.
- With this value the ratio calculated rate to flight rate is reduced to a factor 4.

Efficiency of SEU mitigation Schemes

- Generally EDAC techniques in association with a continuous scrubbing to "wash" the SEU have been successful.
 - Hamming:
 - SSR: SAMPEX (SRAM256K), TOMS (SRAM 256K), SEASTAR (DRAM4M), XTE(SRAM1M), UOSAT, SOHO(DRAM16M)
 - OBC memory: UOSAT (SRAM)
 - Reed Solomon:
 - SSR: UOSAT(SRAM256K&1M), UOSAT12(SRAM4M), HST (DRAM16M)
 - TMR
 - OBC memory: UOSAT12 (SRAM4M)
 - 200% overhead of memory size
 - No significant advantage compared to a modified Hamming code capable of correcting two errors per word.

Multiple Bit Upset (MBU)

- A good SEU mitigation design needs a good understanding and ground testing of the MBU.
 - MBU mechanisms.
 - Charge diffusion away from an ion.
 - several neighboring cells are affected.
 - A different number of cells is affected depending on the ion LET and ion angle of incidence.
 - ion strike in the control circuitry.
 - Block error, row-column error .
 - Ion track intersecting a number of memory cells.
 - Difficult to test at ground level.

MBU in space

- MBU have been observed in flight in all experiments
 - Most MBU occur in high latitude regions (more MBU caused by heavy ions than protons).
 - Blocks errors and multiple errors induced by a ion at grazing incidence have been identified on MPTB/DRAM experiment.
 - Significant rate (>10% of total upset rate) observed on more modern memories (DRAM>16M, SRAM 4M), SAC-ICARE experiment.
 - Single word multiple bit upset (SMU) have been reported on SAC-ICARE and UOSAT12 experiments.
 - Unexpected number of uncorrectable errors on CASSINI SSR.
 - The cause is a bad design: a data word is made with several memory word that have neighboring cells.
 - The uncorrectable error rate is still acceptable for the mission.

Scrubbing Rates

- Traditionally scrubbing rates are calculated on the basis of daily averaged SEU rates.
- Flight data has shown that SEU occurs in burst (very high upset rate during a short period of time).
 - when the spacecraft goes trough the radiation belts.
 - During a SPE.
- Scrubbing rates need to be calculated for a peak upset rates.

Conclusion

- The use of high density commercial memories in space applications has been a success.
- Flight experiments have been very useful to understand the behavior of parts and validate the SEE mitigation schemes.
 - The experiments that include a radiation monitor allow a better understanding of the results (MPTB, SAC-ICARE).
 - It is also important to have an accurate information about the shielding thickness (MPTB, CRUX APEX).
- Modern memories are more and more complex (ie SDRAMs)
 - Significant sensitivity to SMU.
 - Significant SEFI sensitivity.
 - experiments are needed on these devices.

Back-up

Modulation of the SEU rate with solar activity

SEASTAR FDR1&2, Number of SEU per Day

SeaStar Mission

Altitude:

705 km - 705km

Inclination:

98.2°

Dates: September 1997 - Present

 Data from 1/1/1999 to 3/12/2002 has been analyzed for this study

Technology:

- FDR1&2 Seakr Solid State Recorders (SSR) w/ 64MB of Memory
 - EDAC (16,22) Modified Hamming Code - single bit correct, double bit detect
 - Telemetry gathered at 10 second intervals
 - Watchdog timer w/ soft reset 1 second timeout
- DRAM Hitachi MDM1400G-120, 4megabit x 1bit
 - 220 DRAMs per FDR
 - designed in 1994; now obsolete and hard to find

Introduction

- SEASTAR in flight SEU performance were presented in SEE2000 symposium. We present an update that shows the effect of the solar activity and Solar Particle Events (SPE).
- Then we present the the anomaly on the Microwave Anisotropy Probe (MAP) that has been probably caused by solar heavy ions.

- SRAM
 - 0.5K
 - 1K
 - 4K
 - 64K
 - 256K
 - 1M
 - 4M

- DRAM
 - 4M
 - 16M
 - 64M

Conclusion SEASTAR

- The data collected shows a significant sensitivity to solar protons.
- But only high energy protons (>100 MeV).
 This suggests a significant amount of shielding.
- The data also shows the fluctuation of the SEU numbers (and therefore the trapped proton fluxes) with the solar activity.

Solar protons flux - 2000

Solar protons 2001

